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Performance of Coherent Binary Phase-Shift Keying
(BPSK) with Costas-Loop Tracking in the

Presence of Interference
M. K. Simon1

The bit-error probability performance of coherent binary phase-shift keying
(BPSK) in the presence of narrowband (tone) and wideband (modulated tone)
is investigated. The impact of the interference on both the carrier-tracking loop
(assumed to be a conventional Costas loop) and the data detection are considered
both individually and in combination. It is shown that, for loop parameters of prac-
tical interest, the dominant effect is the degradation induced on the data-detection
process, which, depending on the relative frequency offset between the interferer
and the desired signal as well as their relative power ratio, can be quite significant.

I. Introduction

The tracking performance of a Costas-type loop and its impact on the data detection of digital mod-
ulations in a purely additive white Gaussian noise (AWGN) environment are well documented in the
literature [1–4]. When, in addition to the AWGN, co-channel interference [e.g., narrowband (unmodu-
lated tone) or wideband (modulated tone)] is present, then additional degradation takes place both in the
tracking performance of the loop and in the data-detection process itself. The severity of this degradation
depends to a large extent on the strength (power) of the interferer as well as the spectral location (carrier
frequency) of the interfering signal relative to that of the desired signal. Also important is the relative
phase between the desired and interfering signals, which, in the absence of any side information, must
be assumed unknown and, thus, can be modeled as being random with a uniform distribution. With
these parameters in mind, we analyze in this article both the individual tracking and data-detection per-
formances for binary phase-shift-keying (BPSK), including in addition the impact of the former on the
latter. As is traditional, for the tracking performance of the loop, we describe performance in terms of the
mean-square phase jitter whereas, for data detection, performance is measured by bit-error probability
(BEP). The results will be expressed as functions of the ratio of interference to desired signal power and
the normalized (by the bit rate) frequency separation between the interferer and desired signal carrier
frequencies.

The article will be structured into two major sections corresponding to the narrowband and wideband
interferer cases. Each of these two sections will be divided into two subsections corresponding to the
tracking performance of the loop and the data-detection performance of the matched-filter receiver, first
assuming perfect tracking and then combined with the actual tracking loop itself. The tracking loop model
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used throughout will be a so-called I-Q Costas loop, which refers to a Costas loop with integrate-and-
dump (I&D) arm filters. To avoid additional complication, we shall assume perfect bit synchronization
of these arm filter I&Ds, one of which also serves as the matched filter for data detection.

II. Performance in the Presence of Narrowband Interference

A. Tracking Performance of the Costas Loop

Consider the BPSK receiver illustrated in Fig. 1, where the demodulation reference signal is provided
by an I-Q Costas loop as shown.2 Input to this receiver is the sum of a desired signal, ss (t), and a
narrowband (tone) interference signal, sI (t), which are mathematically modeled as

ss (t) =
√

2Psm (t) sin (ωct + θs)

sI (t) =
√

2PI sin ((ωc + ∆ω) t + θI)

 (1)

where Ps, ωc, θs and PI , ωc + ∆ω, θI are, respectively, the power, radian carrier frequency, and phase of
the desired and interference signals, and

m (t) =
∞∑

n=−∞
anp (t− nTb) (2)

is the binary data modulation with {an} an independent and identically distributed (i.i.d.) sequence
taking on equiprobable values ±1, and p (t) is a unit amplitude rectangular pulse of duration equal to the
bit time, Tb. Adding to ss (t) and sI (t) is the AWGN noise:

n (t) =
√

2 [Nc (t) cos (ωct + θs)−Ns (t) sin (ωct + θs)] (3)

where Nc (t) and Ns (t) are in-phase (I) and quadrature-phase (Q) low-pass noise components that are
independent and have single-sided power spectral density (PSD) N0 W/Hz. As such, the total received
signal is then

r (t) = ss (t) + sI (t) + n (t) (4)

Demodulating r (t) with the I and Q reference signals derived by the loop produces the baseband
signals:

2 In this subsection, we shall first consider the ideal case, wherein the demodulation reference for data-detection purposes
is assumed to be perfect.
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Fig. 1.  Block diagram of the I-Q Costas loop receiver.
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εc (t) = r (t)
√

2 cos
(
ωct + θ̂s

)

=
[√

Psm (t)−Ns (t)
]
sinφs + Nc (t) cos φs +

√
PI sin (∆ωt + φs + ∆θ)

εs (t) = r (t)
√

2 sin
(
ωct + θ̂s

)

=
[√

Psm (t)−Ns (t)
]
cos φs −Nc (t) sinφs +

√
PI cos (∆ωt + φs + ∆θ)



(5)

where φs
4= θs − θ̂s is the loop phase error and ∆θ

4= θI − θs is the phase difference between the desired
and interference signals. After passing through the I and Q arm filters, we obtain the sample-and-hold
values at the end of the kth bit interval:

zs (t) =
∫ (k+1)Tb

kTb

εs (t) dt = Tb

√
Psak cos φs −N1 sinφs −N2 cos φs

+ Tb

√
PI {Ack cos (φs + ∆θ)−Ask sin (φs + ∆θ)}

zc (t) =
∫ (k+1)Tb

kTb

εc (t) dt = Tb

√
Psak sinφs + N1 cos φs −N2 sin φs

+ Tb

√
PI {Ask cos (φs + ∆θ) + Ack sin (φs + ∆θ)} , (k + 1) Tb ≤ t ≤ (k + 2) Tb



(6)
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where

Ask
4=

1
Tb

∫ (k+1)Tb

kTb

sin ∆ωtdt =
cos ∆ωkTb − cos ∆ω (k + 1) Tb

∆ωTb

Ack
4=

1
Tb

∫ (k+1)Tb

kTb

cos ∆ωtdt =
− sin ∆ωkTb + sin ∆ω (k + 1) Tb

∆ωTb


(7)

and N1 and N2 are independent zero-mean Gaussian random variables with variance σ2
N1

= σ2
N2

=
N0Tb/2. Defining the complex amplitude

Ak = Ack + jAsk =
1
Tb

∫ (k+1)Tb

kTb

ej∆ωtdt =
1
Tb

∫ Tb

0

ej∆ω(t+kTb)dt (8)

then we can rewrite Eq. (6) as

zs (t) =
∫ (k+1)Tb

kTb

εs (t) dt = Tb

√
Psak cos φs −N1 sin φs −N2 cos φs + Tb

√
PI Re

{
Akej(φs+∆θ)

}

zc (t) =
∫ (k+1)Tb

kTb

εc (t) dt = Tb

√
Psak sinφs + N1 cos φs −N2 sin φs + Tb

√
PI Im

{
Akej(φs+∆θ)

}
,

(k + 1) Tb ≤ t ≤ (k + 2) Tb


(9)

Further note that

|Ak| =
∣∣∣∣∣ 1
Tb

∫ Tb

0

ej∆ω(t+kTb)dt

∣∣∣∣∣ =

∣∣∣∣∣ 1
Tb

∫ Tb

0

ej∆ωtdt

∣∣∣∣∣ =

∣∣∣∣∣ sin ∆ωTb
2

∆ωTb
2

∣∣∣∣∣ (10)

which is independent of k.

Multiplying the two I&D outputs produces the dynamic error signal in the loop, which is given by

z0 (t) = zc (t) zs (t) =
(

1
2
PsT

2
b −

√
PsTbakN2 +

1
2
N2

2 −
1
2
N2

1

)
sin 2φs

+
1
2
PIT

2
b |Ak|2 sin (2 (φs + ∆θ + αk))

+
(√

PsTbak −N2

)
N1 cos 2φs +

√
PsPIT

2
b ak |Ak| sin (2φs + ∆θ + αk)

−
√

PITbN2 |Ak| sin (2φs + ∆θ + αk) +
√

PITbN1 |Ak| cos (2φs + ∆θ + αk) (11)
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where

αk
4= arg Ak = tan−1 Ask

Ack
(12)

Unlike |Ak|, the argument αk is a function of the index of the bit interval, k. To see this, we first write
Ask and Ack in terms of their values in the zeroth interval, namely, As0 and Ac0, as

Ask
4=

1
Tb

∫ Tb

0

sin ∆ω (t + kTb) dt = As0 cos k∆ωTb + Ac0 sin k∆ωTb

Ack
4=

1
Tb

∫ Tb

0

cos ∆ω (t + kTb) dt = Ac0 cos k∆ωTb −As0 sin k∆ωTb


(13)

where

As0
4=

1
Tb

∫ Tb

0

sin ∆ωtdt =
1− cos ∆ωTb

∆ωTb

Ac0
4=

1
Tb

∫ Tb

0

cos ∆ωtdt =
sin ∆ωTb

∆ωTb


(14)

Then,3

αk
4= arg Ak = tan−1 As0 cos k∆ωTb + Ac0 sin k∆ωTb

Ac0 cos k∆ωTb −As0 sin k∆ωTb

= tan−1 |A0| sin (k∆ωTb + α0)
|A0| cos (k∆ωTb + α0)

= k∆ωTb + α0 (15)

where

α0
4= arg A0 = tan−1

1
Tb

∫ Tb

0
sin ∆ωtdt

1
Tb

∫ Tb

0
cos ∆ωtdt

= tan−1

(
1− cos ∆ωTb

sin ∆ωTb

)
= tan−1


sin2 (η/2)

η/2
sin η

η

 (16)

and we have further introduced the shorthand notation for normalized frequency offset,

η
4= ∆ωTb = 2π∆fTb (17)

As we shall soon see, the linear dependence of αk on k as exhibited in Eq. (15) is important in determining
the effect of the interference on the loop’s ability to lock. In particular, the behavior of the loop in the

3 Unless otherwise noted, all arctangent functions are assumed to be taken in the four-quadrant sense, i.e., tan−1(X/Y ) =
(sgn X)(tan−1[X/Y ])P.V. + π([1 − sgn X]/2), where (tan−1[X/Y ])P.V. denotes the principal value (angle in first and
fourth quadrants) of the arctangent of X divided by Y .
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presence of tone interference is reminiscent of the false-lock behavior of Costas loops in the absence of
interference4 [5–8] in that the loop potentially can lock at frequencies other than that of the desired signal
carrier.

The signal component of the dynamic error signal (which results in the so-called loop S-curve) is the
statistical and time average, i.e., the dc component of the expression in Eq. (11), where the statistical
average is taken over both the noise components and the binary data sequence. Performing first the
expectation results in

g (φs; k) 4= z0 (t) =
(

1
2
PsT

2
b

)
sin 2φs +

1
2
PIT

2
b

∣∣∣∣ sin (η/2)
η/2

∣∣∣∣2 sin (2 (φs + ∆θ + kη + α0)) (18)

Now taking the time average (i.e., the average over the index k) of Eq. (18), we observe that the second
term (the one due to the interference) will be zero except when η is an integer multiple of π, i.e., η = nπ,
or, equivalently from Eq. (17),

∆f =
n

2Tb
(19)

That is, if the tone interference occurs at integer multiples of half the data rate away from and either
side of the desired signal carrier frequency,5 then the loop S-curve may be affected by the interference.
Otherwise, it will not. The S-curves corresponding to these scenarios are as follows. For ∆f = n/(2Tb),

g (φs)
4=

〈
z0 (t)

〉
k

=



(
1
2
PsT

2
b

)
sin 2φs +

1
2
PIT

2
b

(
2

nπ

)2

sin (2 (φs + ∆θ + α0)) , n odd

(
1
2
PsT

2
b

)
sin 2φs, n even (n 6= 0)

(
1
2
PsT

2
b

)
sin 2φs +

1
2
PIT

2
b sin (2 (φs + ∆θ + α0)) , n = 0

(20)
with

α0 =


tan−1

2 sin2
(πn

2

)
sin πn

 =
π

2
, n odd

0, n even (n 6= 0)

0, n = 0

(21)

For ∆f 6= n/(2Tb),

g (φs)
4=

〈
z0 (t)

〉
k

=
(

1
2
PsT

2
b

)
sin 2φs (22)

4 M. K. Simon, “False Lock Behavior of Costas Receivers,” Appendix J of Integrated Source and Channel Encoded Digital
Communication System Design Study, Final Report, Axiomatix Report R7607-3, July 31, 1976.

5 Note that for other data formats, e.g., Manchester coding, or pulse shapes, the frequencies and extent to which the
interference affects the loop S-curve will be different, as was the case for the false-lock phenomena [6,8].
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which is the well-known result for a Costas-loop error signal in the absence of interference and in the
true-lock condition. Also, note that the S-curve of Eq. (20) also occurs when the interference tone is
located at an even integer multiple of half the data rate away from the desired signal carrier frequency.

One of the quantities needed to evaluate the tracking performance of the loop is the slope of the
S-curve at its lock point. Before differentiating Eq. (20) [or Eq. (22)], we first combine the two terms of
the S-curve for n odd and n = 0 in Eq. (20), which after some algebra results in

g (φs) =



(
1
2
PsT

2
b

) √√√√1− 2
PI

Ps

(
2

nπ

)2

cos 2∆θ +

[
PI

Ps

(
2

nπ

)2
]2

sin (2 (φs + βn)) , n odd

(
1
2
PsT

2
b

)
sin 2φs, n even (n 6= 0)

(
1
2
PsT

2
b

) √
1 + 2

PI

Ps
cos 2∆θ +

(
PI

Ps

)2

sin (2 (φs + β0)) , n = 0

(23)

where

βn =



1
2

tan−1

−PI

Ps

(
2

nπ

)2

sin 2∆θ

1− PI

Ps

(
2

nπ

)2

cos 2∆θ

, n odd

1
2

tan−1

PI

Ps
sin 2∆θ

1 +
PI

Ps
cos 2∆θ

, n = 0

(24)

Note that for n odd and n = 0, the loop locks with a static phase error, i.e., φs = −βn, whereas for n
even or no interference, the loop locks at φs = 0. Now letting φl = φs or φl = φs + βn as appropriate,
then differentiating Eqs. (20) and (22) with respect to φl and evaluating the result at φl = 0 gives

Kg
4=

dg (φs)
φl

|φl=0 =



PsT
2
b

√√√√1− 2
PI

Ps

(
2

nπ

)2

cos 2∆θ +

[
PI

Ps

(
2

nπ

)2
]2

, n odd

PsT
2
b , n even (n 6= 0)

PsT
2
b

√
1 + 2

PI

Ps

(
2

nπ

)2

cos 2∆θ +
(

PI

Ps

)2

, n = 0

(25)

where the result for n even (n 6= 0) also holds for the case ∆f 6= (n/[2Tb]).

The next consideration is the effect of the noise terms contributed by the interference in Eq. (11) on the
tracking performance of the loop. Since the loop tracks a 2φs process, then, as in previous interference-free
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analyses of Costas loops, we define the equivalent noise by N (t) 4= −2z0(t)
∣∣∣noise
terms

, which from Eq. (11)
becomes

N (t) =
(
N2

1 −N2
2 + 2

√
PsTbakN2

)
sin 2φs − 2

(√
PsTbakN1 −N1N2

)
cos 2φs

+ 2
√

PITbN2

(
sin η/2

η/2

)
sin (2φs + ∆θ + αk)− 2

√
PITbN1

(
sin η/2

η/2

)
cos (2φs + ∆θ + αk) (26)

This noise process, N (t), is piecewise constant (over the duration of a data bit) and can be modeled as
a delta-correlated process with triangular correlation function

RN (τ) = E {N (t) N (t + τ)} =


σ2

N

(
1− |τ |

Tb

)
, |τ | ≤ Tb

0, |τ | > Tb

(27)

where σ2
N is its variance, which after some algebraic manipulation is given by

σ2
N = E

{
N2 (t)

}
= 2PsN0T

3
b

[
1 +

PI

Ps

(
sin η/2

η/2

)2
]

+ N2
0 T 2

b (28)

The equivalent flat PSD of N (t) is then

N ′0 = 2
∫ ∞
−∞

RN (τ) dτ = 2σ2
NTb = 4PsN0T

4
b

[
1 +

PI

Ps

(
sin η/2

η/2

)2
]

+ N2
0 T 3

b (29)

Ignoring the variance of the data-dependent signal × interference term,
√

PsPIT
2
b ak |Ak| sin (2 (φs + ∆θ)),

in Eq. (11),6 then the mean-squared phase jitter of the 2φs process is computed from

σ2
2φs

=
N ′0BL

K2
g

(30)

where BL is the single-sided loop noise bandwidth. Substituting Eqs. (25) and (29) in Eq. (30) gives the
desired result, which can be expressed in the form

σ2
2φs

= 4
(

1
ρPLLSL

)
(31)

where ρPLL
4= Ps/N0BL is the equivalent loop signal-to-noise ratio (SNR) of a phase-locked loop (PLL)

and SL = 4K2
g/ (PsN

′
0/N0) is a factor traditionally referred to as squaring loss that accounts for the

nonlinear (relative to a linear loop such as the PLL) distortions produced in the error signal by the

6 This assumption is similar to ignoring the variance of the signal self-interference term (the difference between the signal
× signal term and its mean value), which only contributes at a very high signal-to-noise ratio (SNR).
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multiplication of the I and Q signal, interference, and noise terms. Substituting Eqs. (25) and (29) in the
squaring-loss definition gives, for ∆f = n/2Tb (η = nπ),

SL =



1− 2
PI

Ps

(
2

nπ

)2

cos 2∆θ +

[
PI

Ps

(
2

nπ

)2
]2

1 +
PI

Ps

(
2

nπ

)2

+
1

2Rd

, n odd

1

1 +
PI

Ps

(
2

nπ

)2

+
1

2Rd

, n even (n 6= 0)

1 + 2
PI

Ps
cos 2∆θ +

(
PI

Ps

)2

1 +
PI

Ps
+

1
2Rd

, n = 0

(32a)

and, for ∆f 6= n/2Tb (η 6= nπ),

SL =
1

1 +
PI

Ps

(
sin η/2

η/2

)2

+
1

2Rd

(32b)

where Rd
4= PsTb/N0 = Eb/N0 is the bit energy-to-noise ratio. Note that for no interference (PI = 0),

Eqs. (32a) and (32b) simplify to

SL =
1

1 +
1

2Rd

=
2Rd

1 + 2Rd
(33)

which is the well-known result for the squaring loss of an I-Q Costas loop [1–4].

Defining the effective loop SNR of the 2φs process by

ρ2φs
=

1
σ2

2φs

=
1
4
ρPLLSL =

1
4

(
Eb

N0

) (
1

BLTb

)
SL

4=
1
4

(
Eb

N0

)
δSL (34)

where δ is the reciprocal of the bit time-loop bandwidth product (typically a large number in standard
applications), then it is customary to model the conditional (on the phase offset between the desired
and interference signals) probability density function (PDF) of this process by a Tikhonov distribution,
namely,

p2φs
(2φs |∆θ ) =

exp {ρ2φ2 cos (2 (φs + βn))}
2πI0 (ρ2φs

)
, 2 |φs + βn| ≤ π (35)

where βn is determined from Eq. (24) for n integer and βn = 0 for n noninteger. Also, in Eq. (35), I0 (•)
is the modified Bessel function of the first kind. In the next subsection, we shall discuss the impact of
this noisy carrier demodulation reference on the average BEP of the BPSK receiver.
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B. Average Bit-Error-Probability Performance of the Receiver

As indicated in the introduction, we start out by considering the direct effect of the interference on
the matched-filter output, assuming that the carrier-demodulation reference signal is perfect. So as not
to duplicate our effort when we consider the case when the demodulation reference is derived from the
Costas loop itself, we shall first evaluate the conditional (on the loop phase error, φs) BEP from which
the result for a perfect carrier reference is obtained simply by setting φs = 0.

The matched filter in the I arm of the Costas loop serves as the data detector. We have already
specified its sample-and-hold output value, zs (t), in Eq. (9), which for the arbitrarily selected zeroth bit
interval k = 0 becomes

zs (t) = Tb

√
Psa0 cos φs + Tb

√
PI

[
sin η

η
cos (φs + ∆θ)− 1− cos η

η
sin (φs + ∆θ)

]

−N1 sinφs −N2 cos φs

= Tb

√
Psa0 cos φs + Tb

√
PI

∣∣∣∣ sin η/2
η/2

∣∣∣∣ cos (φs + ∆θ + α0)

−N1 sinφs −N2 cos φs, Tb ≤ t ≤ 2Tb (36)

where α0 is defined in Eq. (16) and N
4= −N1 sin φs−N2 cos φs is a zero-mean Gaussian noise process with

variance σ2 = N0Tb/2. Comparing this output to a zero threshold results in a decision on a0. Assuming
a0 = 1, the conditional probability of error is given by

Pb (E |φs,∆θ ) |a0=1 = Pr {zs (t) < 0 |a0 = 1}

=
1
2
erfc

{√
Rd

[
cos φs +

√
PI

Ps

∣∣∣∣ sin η/2
η/2

∣∣∣∣ cos (φs + ∆θ + α0)

]}
(37a)

Similarly, assuming a0 = −1, the conditional probability of error is given by

Pb (E |φs,∆θ ) |a0=−1 = Pr {zs (t) ≥ 0 |a0 = −1}

=
1
2
erfc

{√
Rd

[
cos φs −

√
PI

Ps

∣∣∣∣ sin η/2
η/2

∣∣∣∣ cos (φs + ∆θ + α0)

]}
(37b)

Thus, since the hypotheses a0 = −1 and a0 = 1 are equiprobable, then averaged over the data, the
conditional BEP is

Pb (E |φs,∆θ ) =
1
2
Pb (E |φs,∆θ ) |a0=1 +

1
2
Pb (E |φs,∆θ ) |a0=−1 (38)

Assuming a uniform distribution on ∆θ, which is appropriate in the absence of any a priori information
concerning the relative phase between the desired and interference signals, then for ideal carrier tracking,
we set φs = 0 in Eq. (38), which gives
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Pb (E) |ideal =
1
8π

∫ π

−π

erfc

{√
Rd

[
1 +

√
PI

Ps

∣∣∣∣ sin η/2
η/2

∣∣∣∣ cos (∆θ + α0)

]}
d∆θ

+
1
8π

∫ π

−π

erfc

{√
Rd

[
1−

√
PI

Ps

∣∣∣∣ sin η/2
η/2

∣∣∣∣ cos (∆θ + α0)

]}
d∆θ (39)

This result is upper and lower bounded by Eq. (38) evaluated at the worst- and best-case values of ∆θ,
namely,

∆θ |worst = − α0

∆θ |best = − α0 ±
π

2

 (40)

which results in

Pb (E) |max =
1
4
erfc

{√
Rd

[
1 +

√
PI

Ps

∣∣∣∣ sin η/2
η/2

∣∣∣∣
]}

+
1
4
erfc

{√
Rd

[
1−

√
PI

Ps

∣∣∣∣ sin η/2
η/2

∣∣∣∣
]}

Pb (E) |min =
1
2
erfc

{√
Rd

}


(41)

When the demodulation reference is provided by the Costas loop itself, then there is an additional
BEP degradation due to the impact of the noise and interference on the loop tracking performance. This
can be evaluated by averaging the conditional BEP of Eq. (38) over both the uniform distribution on ∆θ
and the Tikhonov distribution on φs obtained from Eq. (35), which gives

Pb (E) =
1
2π

∫ (π/2)−βn

−(π/2)−βn

∫ π

−π

Pb (E |φs, ∆θ ) 2p2φs (2φs |∆θ ) d∆θdφs

=
1
4π

∫ (π/2)−βn

−(π/2)−βn

∫ π

−π

erfc

{√
Rd

[
cos φs +

√
PI

Ps

∣∣∣∣ sin η/2
η/2

∣∣∣∣ cos (φs + ∆θ + α0)

]}

× exp {ρ2φs
cos (2 (φs + βn))}

2πI0 (ρ2φs
)

d∆θdφs

+
1
4π

∫ (π/2)−βn

−(π/2)−βn

∫ π

−π

erfc

{√
Rd

[
cos φs −

√
PI

Ps

∣∣∣∣ sin η/2
η/2

∣∣∣∣ cos (φs + ∆θ + α0)

]}

× exp {ρ2φs
cos (2 (φs + βn))}

2πI0 (ρ2φs
)

d∆θdφs (42)

and is the desired result.
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III. Performance in the Presence of Wideband Interference

A. Tracking Performance of the Costas Loop

For the wideband interferer case, the received signal is again given by Eq. (4), where now

sI (t) =
√

2PImI (t) sin ((ωc + ∆ω) t + θI) (43)

with

mI (t) =
∞∑

n=−∞
a′np (t− nTb − τ) (44)

denoting the interference modulation, which is independent of the desired signal modulation and whose
data rate is assumed to be equal to that of the desired signal. Again, in Eq. (44), {a′n} is an independent
and identically distributed (i.i.d.) sequence taking on equiprobable values ±1; p (t) is a unit amplitude
rectangular pulse of duration Tb; and now τ denotes the time asynchronism of the interference with
respect to the desired signal, which in the absence of any a priori information, is assumed to be uniformly
distributed over a Tb-second interval. Analogously to Eq. (5), the I and Q demodulator baseband outputs
become

εc (t) = r (t)
√

2 cos
(
ωct + θ̂s

)

=
[√

Psm (t)−Ns (t)
]
sinφs + Nc (t) cos φs +

√
PImI (t) sin (∆ωt + φs + ∆θ)

εs (t) = r (t)
√

2 sin
(
ωct + θ̂s

)

=
[√

Psm (t)−Ns (t)
]
cos φs −Nc (t) sinφs +

√
PImI (t) cos (∆ωt + φs + ∆θ)



(45)

After passing these signals through the I and Q I&Ds, the sample-and-hold values for the kth bit interval
are still given by Eq. (9), where now

Ak = Ack + jAsk =
1
Tb

∫ (k+1)Tb

kTb

∞∑
n=−∞

a′np (t− nTb − τ)ej∆ωtdt

=
1
Tb

∫ Tb

0

∞∑
n=−∞

a′np (t + (k − n) Tb − τ) cos (∆ω (t + kTb)) dt

+ j
1
Tb

∫ Tb

0

∞∑
n=−∞

a′np (t + (k − n) Tb − τ) sin (∆ω (t + kTb)) dt (46)

Analogously to Eq. (13), the coefficients in Eq. (46) can be expressed in terms of ones that are independent
of k, i.e.,
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Ask = As0 cos k∆ωTb + Ac0 sin k∆ωTb

Ack = Ac0 cos k∆ωTb −As0 sin k∆ωTb

 (47)

where now7

Ac0
4=

1
Tb

∫ Tb

0

∞∑
n=−∞

a′np (t + (k − n) Tb − τ) cos ∆ωtdt

=
1
Tb

∫ Tb

0

∞∑
m=−∞

a′mp (t−mTb − τ) cos ∆ωtdt

As0
4=

1
Tb

∫ Tb

0

∞∑
n=−∞

a′np (t + (k − n) Tb − τ) sin ∆ωtdt

=
1
Tb

∫ Tb

0

∞∑
m=−∞

a′mp (t−mTb − τ) sin ∆ωtdt



(48)

which are clearly independent of k, the index of the desired signal’s bit interval. Furthermore,

|Ak|2 = A2
ck + A2

sk = A2
c0 + A2

s0 (49)

Letting ε
4= τ/Tb, then for τ ≥ 0, Eq. (48) evaluates to

Ac0 = a′−1

sin (ηε)
η

+ a′0
sin η − sin (ηε)

η

As0 = a′−1

1− cos (ηε)
η

+ a′0
cos (ηε)− cos η

η


(50)

Similar results in terms of a′0 and a′1 would be obtained for τ ≤ 0. Substituting Eq. (50) in Eq. (49) and
simplifying the trigonometry gives

|Ak|2 =
(

sin (ηε/2)
η/2

)2

+
(

sin (η (1− ε) /2)
η/2

)2

+ a′0a
′
−1

[(
sin (η (1− ε) /2)

η/2

) (
sin (η (1 + ε) /2)

η/2

)
−

(
sin (η (1− ε) /2)

η/2

)2
]

(51)

7 Note that the data bit a′m in the terms to the right of the second equality in Eq. (48) should really be a′m+k. However,
since {a′m} represents an arbitrary doubly infinite random data sequence, then there is no loss in generality in replacing
the sequence {a′m+k} by {a′m}.
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Multiplying the two I&D outputs as before produces the dynamic error signal in the loop, which is
still given by Eq. (11) with αk as in Eq. (15) and

α0
4= arg A0 = tan−1 As0

Ac0
(52)

which by virtue of Eq. (48) is also independent of k. Thus, the conditions (frequency offsets) under
which the loop S-curve is affected by the presence of wideband interference are identical to those for the
narrowband interference case; in particular, the S-curve is now

g (φs; k) 4= z0 (t) =
(

1
2
PsT

2
b

)
sin 2φs +

1
2
PIT

2
b Ea′

{
|Ak|2 sin (2 (φs + ∆θ + kη + α0))

}

=
(

1
2
PsT

2
b

)
sin 2φs +

1
2
PIT

2
b |Ak|2 cos 2α0

α′

sin (2 (φs + ∆θ + kη))

+
1
2
PIT

2
b |Ak|2 sin 2α0

α′

cos (2 (φs + ∆θ + kη)) (53)

and the second and third terms contribute to the time-averaged S-curve, g (φs) = 〈g (φs; k)〉k, only when

the condition of Eq. (19) is met. Using Eq. (50), the statistical averages |Ak|2 cos 2α0

α′

and |Ak|2 sin 2α0

α′

are obtained as

|Ak|2 sin 2α0

α′

= 2As0Ac0
α′

= 2
[(

sin (ηε)
η

) (
1− cos (ηε)

η

)

+
(

sin η

η
− sin (ηε)

η

) (
cos (ηε)

η
− cos η

η

)]
4= Ks (ε;n)

|Ak|2 cos 2α0

α′

= A2
c0 −A2

s0

α′

=

[(
sin (ηε)

η

)2

+
(

sin η

η
− sin (ηε)

η

)2

−
(

1− cos (ηε)
η

)2

−
(

cos (ηε)
η

− cos η

η

)2
]
4= Kc (ε;n)



(54)

which for ∆f = n/2Tb (η = nπ) become
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Ks (ε;n) =



−2
(

sin (2nπε)
nπ

)
, n odd

8
(

sin (nπε)
nπ

) (
sin2 (nπε/2)

nπ

)
, n even (n 6= 0)

0, n = 0

Kc (ε;n) =



2
(

sin ε

nπ

)2

− 4
(

sin2 (nπε/2)
nπ

)2

− 4
(

cos2 (nπε/2)
nπ

)2

, n odd

2
(

sin (nπε)
nπ

)2

− 8
(

sin2 (nπε/2)
nπ

)2

, n even (n 6= 0)

ε2 + (1− ε)2 , n = 0



(55)

Finally, conditioned on τ and ∆θ, the time-averaged S-curves are given by

g (φs) =
(

1
2
PsT

2
b

)
sin 2φs +

1
2
PIT

2
b Kc (ε;n) sin (2 (φs + ∆θ))

+
1
2
PIT

2
b Ks (ε;n) cos (2 (φs + ∆θ))

4=
1
2
Kg sin (2 (φs + βn)) (56)

with slope at the lock point [see Eq. (25)],

Kg =g (φs) = PsT
2
b

√
1 + 2

PI

Ps
[Kc (ε;n) cos 2∆θ −Ks (ε;n) sin 2∆θ] +

(
PI

Ps

)2

(K2
s (ε;n) + K2

c (ε;n))

(57)

where

βn =
1
2

tan−1

PI

Ps
[Kc (ε;n) sin 2∆θ + Ks (ε;n) cos 2∆θ]

1 +
PI

Ps
[Kc (ε;n) cos 2∆θ −Ks (ε;n) sin 2∆θ]

(58)

When ∆f 6= n/2Tb, then the time-averaged S-curve is unaffected by the interference and, as before, is
given by g (φs) =

(
[1/2]PsT

2
b

)
sin 2φs with slope Kg = PsT

2
b .

The equivalent noise perturbing the loop is obtained by analogy with Eq. (26) as

N (t) =
(
N2

1 −N2
2 + 2

√
PsTbakN2

)
sin 2φs − 2

(√
PsTbakN1 −N1N2

)
cos 2φs

+ 2
√

PITbN2 |Ak| sin (2φs + ∆θ + αk)− 2
√

PITbN1 |Ak| cos (2φs + ∆θ + αk) (59)
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which now has a variance

σ2
N = E

{
N2 (t)

}
= 2PsN0T

3
b

[
1 +

PI

Ps
|Ak|2

]
+ N2

0 T 2
b (60)

where, from Eq. (51),

|Ak|2 =
(

sin (ηε/2)
η/2

)2

+
(

sin (η (1− ε) /2)
η/2

)2

(61)

Thus, the mean-squared phase jitter is still given by Eq. (31), where now the squaring-loss factor is, for
∆f = n/2Tb (η = nπ),

SL =
1 + 2

PI

Ps
[Kc (ε;n) cos 2∆θ −Ks (ε;n) sin 2∆θ] +

(
PI

Ps

)2 (
K2

s (ε;n) + K2
c (ε;n)

)
1 +

PI

Ps

[(
sin (nπε/2)

nπ/2

)2

+
(

sin (nπ (1− ε) /2)
nπ/2

)2
]

+
1

2Rd

(62a)

and, for ∆f 6= n/2Tb (η 6= nπ),

SL =
1

1 +
PI

Ps

[(
sin (ηε/2)

η/2

)2

+
(

sin (η (1− ε) /2)
η/2

)2
]

+
1

2Rd

(62b)

Note that, for τ = 0 (ε = 0) (synchronous interferer and desired user), the squaring loss of Eqs. (62a) and
(62b) for the wideband interferer become identical to those for the narrowband (tone) interferer as given
by Eqs. (32a) and (32b), respectively. Furthermore, because of the symmetry of the problem, replacing
ε by |ε| in Eqs. (62a) and (62b) makes them, in addition, valid for ε < 0.

B. Average Bit-Error-Probability Performance of the Receiver

Once again, as indicated in the introduction, we start out by first evaluating the conditional (on the
loop phase error, φs) BEP from which the result for a perfect carrier reference is obtained simply by
setting φs = 0.

The matched filter in the I arm of the Costas loop serves as the data detector. We have already
specified its sample-and-hold output value, zs (t), in Eq. (9), which, for the arbitrarily selected zeroth bit
interval k = 0, becomes

zs (t) = Tb

√
Psa0 cos φs + Tb

√
PI [Ac0 cos (φs + ∆θ)−As0 sin (φs + ∆θ)]

−N1 sinφs −N2 cos φs, Tb ≤ t ≤ 2Tb (63)

where N
4= −N1 sinφs−N2 cos φs is again a zero-mean Gaussian noise process with variance σ2 = N0Tb/2.

Comparing this output to a zero threshold results in a decision on a0. Assuming a0 = 1, the conditional
probability of error is given by
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Pb (E |φs,∆θ, ε ) |a0=1 = Pr {zs (t) < 0 |a0 = 1}a
′
0,a′−1

=
1
2
erfc

{√
Rd

[
cos φs +

√
PI

Ps
|Ak| cos (φs + ∆θ + α0)

]}a′0,a′−1

(64)

where |Ak| is determined from Eq. (51), and from Eqs. (50) and (52),

α0 = tan−1 cos (ηε)− cos η + a′0a
′
−1 (1− cos (ηε))

sin η − sin (ηε) + a′0a
′
−1 sin (ηε)

+ π
(1− sgn a′0)

2
(65)

Noticing that |Ak| depends only on the interference bit product a′0a
′
−1 but that α0 depends both on the

product a′0a
′
−1 and on a′0 itself, then Eq. (64) can be written as

Pb (E |φs, ∆θ, ε ) |a0=1 =
1
8
erfc

{√
Rd

[
cos φs +

√
PI

Ps

∣∣∣A(1)
k

∣∣∣ cos
(
φs + ∆θ + α

(1)
0

)]}

+
1
8
erfc

{√
Rd

[
cos φs +

√
PI

Ps

∣∣∣A(−1)
k

∣∣∣ cos
(
φs + ∆θ + α

(−1)
0

)]}

× 1
8
erfc

{√
Rd

[
cos φs −

√
PI

Ps

∣∣∣A(1)
k

∣∣∣ cos
(
φs + ∆θ + α

(1)
0

)]}

+
1
8
erfc

{√
Rd

[
cos φs −

√
PI

Ps

∣∣∣A(−1)
k

∣∣∣ cos
(
φs + ∆θ + α

(−1)
0

)]}
(66)

where

∣∣∣A(1)
k

∣∣∣2 =
(

sin (ηε/2)
η/2

)2

+
(

sin (η (1− ε) /2)
η/2

) (
sin (η (1 + ε) /2)

η/2

)

∣∣∣A(−1)
k

∣∣∣2 = 2
(

sin (η (1− ε) /2)
η/2

)2

+
(

sin (ηε/2)
η/2

)2

−
(

sin (η (1− ε) /2)
η/2

) (
sin (η (1 + ε) /2)

η/2

)


(67a)

and

α
(1)
0

4= tan−1 1− cos η

sin η

α
(−1)
0

4= tan−1 2 cos (ηε)− cos η − 1
sin η − 2 sin (ηε)

 (67b)

For ∆f = n/2Tb (η = nπ), these quantities explicitly evaluate to
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∣∣∣A(1)
k

∣∣∣2 =



(
2

nπ

)2

, n odd

0, n even (n 6= 0)

1, n = 0

∣∣∣A(−1)
k

∣∣∣2 =



(
2

nπ

)2

, n odd

4
(

sinnπε/2
nπ/2

)2

, n even (n 6= 0)

(1− 2ε)2 , n = 0



(68a)

and

α
(1)
0 =


π

2
, n odd

0, n even (n 6= 0)

0, n = 0

α
(−1)
0 =



π

2
+ nπε, n odd

π + tan−1

(
1− cos (nπε)

sin (nπε)

)
, n even (n 6= 0)

0, n = 0



(68b)

Similarly to Eq. (64), for a0 = −1, the conditional probability of error is given by

Pb (E |φs,∆θ, ε ) |a0=−1 = Pr {zs (t) ≥ 0 |a0 = −1}a
′
0,a′−1

=
1
2
erfc

{√
Rd

[
cos φs −

√
PI

Ps
|Ak| cos (φs + ∆θ + α0)

]}a′0,a′−1

(69)

Thus, averaging over the equiprobable desired signal bits a0 = 1 and a0 = −1, the conditional BEP,
Pb (E |φs,∆θ, ε ), is also given by Eq. (66). Again, for ε = 0,

∣∣∣A(1)
k

∣∣∣ =
∣∣∣A(−1)

k

∣∣∣ =
∣∣∣∣ sin (η/2)

η/2

∣∣∣∣
α

(1)
0 = α

(−1)
0 = tan−1 1− cos η

sin η

and Eq. (66) reduces to the previously obtained result [see the average of Eqs. (37a) and (37b)] for the
tone interferer.
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Considering first the case of ideal carrier tracking wherein we set φs = 0, then averaging Eq. (66) over
uniform distributions for ∆θ and ε, we obtain the average BEP:

Pb (E) =
1

16π

∫ π

−π

∫ 1/2

−1/2

erfc

{√
Rd

[
1 +

√
PI

Ps

∣∣∣A(1)
k

∣∣∣ cos
(
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(1)
0

)]}
dεd∆θ

+
1

16π

∫ π

−π

∫ 1/2

−1/2

erfc

{√
Rd

[
1 +

√
PI

Ps

∣∣∣A(−1)
k

∣∣∣ cos
(
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(−1)
0

)]}
dεd∆θ

+
1

16π

∫ π

−π

∫ 1/2
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{√
Rd

[
1−

√
PI

Ps

∣∣∣A(1)
k

∣∣∣ cos
(
∆θ + α

(1)
0

)]}
dεd∆θ

+
1

16π

∫ π

−π

∫ 1/2

−1/2

erfc

{√
Rd

[
1−

√
PI

Ps

∣∣∣A(−1)
k

∣∣∣ cos
(
∆θ + α

(−1)
0

)]}
dεd∆θ (70)

Next, for the more realistic case when the demodulation reference is provided by the Costas loop itself,
one requires as before an additional average of Eq. (66) over a Tikhonov distribution on φs, analogous to
Eq. (42). In particular,

Pb (E) =
1

16π

∫ (π/2)−βn

−(π/2)−βn

∫ π

−π

∫ 1/2

−1/2
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√
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)]}
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+
1

16π
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+
1

16π
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{√
Rd

[
cos φs −

√
PI

Ps
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+
1

16π

∫ (π/2)−βn

−(π/2)−βn

∫ π

−π
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{√
Rd

[
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√
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× p2φs (2φs |∆θ, ε ) dεd∆θdφs (71)

where p2φs
(2φs |∆θ, ε ) is characterized by Eq. (35) with ρ2φs

determined from the squaring loss of
Eqs. (62a) and (62b) and βn is given by Eq. (58).
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IV. Numerical Results

Illustrated in Figs. 2(a) and 2(b) is the squaring-loss behavior of the Costas loop in the presence of
narrowband (tone) interference corresponding, respectively, to the cases when ∆fTb 6= n/2 and ∆fTb =
n/2 and n is integer. The curves are plotted with the ratio of interference to desired signal power, PI/Ps,
and ∆fTb as parameters. Also shown for comparison is the squaring-loss performance for no interference
(PI/Ps = 0), which corresponds to the well-known result in Eq. (33).

In the case of the former, i.e., ∆fTb 6= n/2, we see that the squaring loss in dB [as computed from
Eq. (32b)] is always negative (implying a true loss or degradation in loop SNR), with the severity of
this loss increasing as PI/Ps increases and ∆fTb becomes smaller (i.e., the frequency of the interfering
tone approaches that of the desired signal). Alternately, as the interfering tone moves further and further
outside the bandwidth of the desired signal modulation, its effect on loop tracking performance diminishes.

In the case of the latter, i.e., ∆fTb = n/2, the potential effect of the interfering tone on the signal ×
signal term (numerator) in the squaring loss (as per the same behavior in the false-lock problem) results in
a somewhat different phenomenon. First of all, for n an even integer (not including n = 0), the interferer
has no effect on the signal × signal term and, thus, the squaring-loss behavior is similar to that for the
case of ∆fTb 6= n/2 described above. However, when n is an odd integer or n = 0 (i.e., the interfering
tone falls exactly on the desired signal carrier frequency), then the signal × signal term is affected [see
Eq. (32a)] and, furthermore, depends on the phase difference, ∆θ, between the interferer and desired
signal. The worst squaring loss for these two cases corresponds to ∆θ = 0 or ∆θ = π for n an odd integer
and ∆θ = π/2 for n = 0. [Of course, one should remember that, in a true situation, ∆θ is a uniformly
distributed parameter and, thus, the effect of the loop’s ability to track on the average error-probability
performance would be obtained by averaging over this parameter—see Eq. (42).] The curves plotted in
Fig. 2(b) correspond to this worst-case value of ∆θ. Interestingly enough, we observe that, when the
interference-to-desired-signal-power ratio is sufficiently large and the tone occurs at the desired signal
carrier frequency (i.e., n = 0), the squaring “loss” in fact becomes a gain! The reasoning behind this is
that a Costas loop is quite capable (moreover it prefers this to a modulated tone) of tracking a pure tone
when it occurs at the correct frequency. Thus, in this situation, the additional power provided by the
interfering signal at the desired signal carrier frequency aids the loop’s ability to track. In fact, if this
interfering tone becomes sufficiently large (in power) relative to the desired signal, the loop will instead
track the tone. Even if the interfering tone is not at the desired signal carrier frequency but is in fact
offset from it by an odd half integer multiple of the data rate, then analogously to the false-lock problem,
a dc component is produced at the error-signal point in the loop and again this additional error-signal
voltage can contribute a positive effect on the loop’s ability to track. This can be observed in Fig. 2(b)
by comparing the squaring-loss curves corresponding to ∆fTb = 0.5 for PI/Ps = 2.0 and PI/Ps = 4.0.
For small values of PI/Ps, the loop will always exhibit a squaring loss.

Figure 3 illustrates the average BEP in the presence of narrowband interference for the case when the
carrier tracking is assumed to be perfect and is computed from Eq. (39). The interference-to-desired-
signal-power ratio is held fixed at PI/Ps = 1.0, whereas the relative frequency offset between the two
signals is varied. Also shown is the curve corresponding to zero interference, PI/Ps = 0, which corresponds
to the ideal BEP performance of PSK, i.e., Pb (E) = 1/2 erfc

√
Rd. The results in this figure illustrate the

importance of the frequency location of the tone relative to that of the desired signal. In particular, when
the tone is close (in frequency) to the desired signal, then it has a major impact on the BEP performance,
whereas its effect is considerably reduced when it is further out in the signal spectrum. Also, note that
the performance for ∆fTb = 1.2 is better than that for ∆fTb = 1.5, which reflects the sin x/x behavior
(between the first and second nulls of this function) of the BEP on the parameter ∆fTb [see Eq. (39)].
Finally, when the interfering tone occurs at integer values of the data rate away from the desired signal
carrier frequency, i.e., ∆fTb is integer (n is even), then sin (η/2) / (η/2) = sinnπ/nπ = 0, whereupon
from Eq. (39), the interferer has no effect and the performance is given by the zero interference curve.
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Fig. 2. Squaring loss versus bit SNR in the presence of narrowband (tone) interference:
(a) Df Tb ¹ n / 2 and (b) Df Tb = n / 2 (n integer).
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Fig. 3. Average bit-error probability versus bit SNR in the presence of narrowband
(tone) interference (perfect carrier synchronization assumed).

10-1

10-2

10-3

10-4

10-5

10-6

Df Tb = 0.0
PI /Ps = 1.0

0.2

0.4

0.5

0.6

0.8

1.51.2

PI /Ps = 0.0

Figure 4 is the companion to Fig. 3 when the carrier-phase tracking is provided by the Costas loop as
per the discussion in Subsection 2.A. A value of δ = 10 [see Eq. (34)] has been chosen for all of the curves.
Even for this relatively small value for the reciprocal of the bit time-loop bandwidth product (typical
values of practical systems are in the hundreds), the degradation due to the Costas-loop tracking relative
to an ideal phase-coherent demodulation reference is very small and hardly noticeable on the graphs
themselves (the raw data that generated these curves show the small difference). Thus, we conclude that
the dominant effect of the interferer on average BEP is that produced on the data detector itself rather
than on the phase tracking loop.

For wideband interference, Fig. 5 is the analogous plot to Fig. 3. Comparing these two figures, we
observe that the wideband interferer has a more deleterious effect on performance than that produced
by the narrowband interferer. We further note in Fig. 5 that, unlike the tone interference case, when
the center frequency of the interferer occurs at integer values of the data rate away from the desired
signal carrier frequency, i.e., ∆fTb is an integer (n is even), the interferer indeed still has an effect on
the BEP performance of the receiver. The reason for this can be gleaned from Eqs. (70) and (71) in
combination from Eq. (68a), where we observe that the interference degradation is not simply a sinx/x
function dependent only on ∆fTb (or equivalently η), but rather depends on the combination of η and the
normalized time offset, ε, between the desired and interfering signals. Thus, only when the two signals
are perfectly time aligned (i.e., ε = 0) does the interference effect disappear. Finally, when the carrier
synchronization is provided by the I-Q Costas loop, then analogous to what was true for the narrowband
interferer case, the additional degradation due to such nonideal tracking is again very small. As such, we
shall not show the numerical plots for this case since, as was true for Fig. 4 relative to Fig. 3, the effect
would be hardly noticeable on the graphs themselves. Thus, we once again conclude that the dominant
effect of the interferer on average BEP is that produced on the data detector itself rather than on the
phase tracking loop.
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Fig. 4. Average bit-error probability versus bit SNR in the presence of narrow-
band (tone) interference (carrier synchronization provided by a Costas loop);
d = 1/BLTB = 10.
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Fig. 5. Average bit-error probability versus bit SNR in the presence of wideband
interference (perfect carrier synchronization assumed).
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